
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 49 (2006) 984–994
A numerical study on the forced convection heat transfer
from an isothermal and isoflux sphere in the steady

symmetric flow regime

S.D. Dhole a, R.P. Chhabra a,*, V. Eswaran b

a Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208 016, India
b Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208 016, India

Received 15 April 2005; received in revised form 29 August 2005
Available online 11 November 2005
Abstract

The effects of Reynolds and Prandtl numbers on the heat transfer characteristics of an unconfined sphere for different thermal bound-
ary conditions (isothermal and isoflux) on the sphere surface have been investigated numerically by using a finite volume method for the
range of conditions as 5 6 Re 6 200 and 0.7 6 Pr 6 400 (the maximum value of Peclet number being 2000). Based on the numerical
results obtained herein, heat transfer correlations are developed for the constant temperature and the constant heat flux boundary con-
ditions on the solid sphere surface in the steady symmetric flow regime. The variation of local Nusselt number on the sphere surface
shows the effect of Prandtl number on heat transfer from a sphere in this flow regime. In addition, this work also demonstrates an
approach to solve such flow problems using the Cartesian form of the field equations.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Owing to its many practical applications and scientific
interest, the problem of convective heat transfer from a
sphere has been studied extensively. The extensive litera-
ture on this subject has been summarized, amongst others,
by Clift et al. [1], and by Polyanin et al. [2]. Analytical and
experimental results in the form of correlations abound in
heat transfer and transport phenomena textbooks, e.g. [3].
A cursory inspection of the available literature reveals the
preponderance of studies involving the flow of air, i.e.,
the Prandtl number value of 0.7, e.g., see [1,2,4]. In contrast
much less is known about the effect of Prandtl number on
heat transfer. Based on experimental heat transfer data
with water, oil and air, Whitaker [5] gave a correlation
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for the average Nusselt number for a sphere in an uniform
free-stream for the range of Reynolds numbers as 1 6

Re 6 105. Acrivos and Taylor [6] used the Stokesian veloc-
ity distribution to derive their well-known solution for the
steady state for small values of Peclet numbers which
works well for very small Reynolds numbers (Re � 1).
Choudhoury and Drake [7] developed an analytical solu-
tion for unsteady heat transfer from a sphere at low Rey-
nolds numbers (Re < 1) using the steady state velocity
field obtained by Proudman and Pearson [8]. Dennis
et al. [9] numerically studied the heat transfer from an iso-
thermal sphere for the range of Reynolds numbers up to 20
and Prandtl numbers of O(1). Abramzon and Elata [10]
carried out a numerical study for the transient heat transfer
from a rigid sphere over a wide range of Peclet numbers
using the Stokesian velocity distribution (Re � 1). Using
the boundary layer flow approach, Ahmed and Yovano-
vich [11] provided an approximate analytical solution for
the forced convection heat transfer from isothermal
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Nomenclature

CD total drag coefficient (–) [¼ 2FD=ðqU2
1pR2

s Þ]
CDf friction or viscous drag coefficient (–) [Eq. (7)]
CDp pressure drag coefficient (–) [Eq. (7)]
Cp specific heat of the fluid (J/kgK)
CWT constant wall temperature
D diameter of sphere (m)
FD drag force exerted on the sphere (N)
Fs factor of safety (–) [Eq. (10)]
GCI grid convergence index
h local convective heat transfer coefficient

(W/m2K)
�h average convective heat transfer coefficient

(W/m2K)
k thermal conductivity of the fluid (W/mK)
Lu upstream length from the inlet to the center of

sphere (–)
Ld downstream length from the center of sphere to

the outlet (–)
Lr recirculation length measured from the rear

stagnation point (–)
Lx length of the computational domain (–)

[=Lu + Ld]
Ly height of the computational domain (–)
N number of grid points [=Ni · Nj]
Ni number of grid points on half sphere
Nj number of grid points on upstream/downstream

symmetry line
ns direction normal to the sphere surface (–)
Nu average Nusselt number of the sphere (–)

[¼ �hD=k]
Nuh local Nusselt number of the sphere (–) [=hD/k]
p non-dimensional pressure (–) [¼ p0=ðqU2

maxÞ]
p1 non-dimensional pressure at the exit (–)
Pe Peclet number (–) [=Re · Pr]
Pr Prandtl number (–) [=lcp/k]
Q numerical solution (–) [Eq. (10)]
Qc numerical solution on a coarse grid (–) [Eq. (10)]
Qf numerical solution on a fine grid (–) [Eq. (10)]
qw heat flux at the surface of the sphere (W/m2)
rg ratio of the refinement between fine and coarse

grids
Re Reynolds number (–) [=DU1q/l]
t time (–) [=t 0/(D/Umax)]
T temperature (–) [=(T 0 � T1)/(Tw � T1) or

(T 0 � T1)/(qwD/k)]
T1 temperature of the fluid at the inlet (K)
Tw constant wall temperature at the surface of the

sphere (K)

Uc average streamwise velocity (–)
U1 uniform velocity of the fluid at the inlet (m/s)
UHF uniform heat flux
UP + CD first-order upwind + central difference con-

vective scheme
Vx component of the velocity in x-direction (–)

[¼ V 0
x=U1]

Vy component of the velocity in y-direction (–)
[¼ V 0

y=U1]
Vy1 component of the velocity in y-direction for sec-

tor 1 in Fig. 3 (–) [¼ V 0
y1=U1]

Vy2 component of the velocity in y-direction for sec-
tor 2 in Fig. 3 (–) [¼ V 0

y2=U1]
V n

y1 normal component of Vy velocity for sector 1 in
Fig. 3 (–)

V t
y1 tangential component of Vy velocity for sector 1

in Fig. 3 (–)
V n

y2 normal component of Vy velocity for sector 2 in
Fig. 3 (–)

V t
y2 tangential component of Vy velocity for sector 2

in Fig. 3 (–)
Vz component of the velocity in z-direction (–)

½¼ V 0
z=U1�

Vz1 component of the velocity in z-direction for
sector 1 in Fig. 3 (–) ½¼ V 0

z1=U1�
Vz2 component of the velocity in z-direction for

sector 2 in Fig. 3 (–) ½¼ V 0
z2=U1�

x streamwise coordinate (–) [=x 0/D]
y transverse coordinate (–) [=y 0/D]
z azimuthal coordinate (–) [=z 0/D]

Greek symbols

l dynamic viscosity of the fluid, Pas
/ dependent variable in convective boundary con-

dition (–)
/z azimuthal angle (degree)
h streamwise angle (degree)
hs angle of separation measured from front stagna-

tion point (degree)
q density of the fluid (kg/m3)

Superscripts
a overall order of the accuracy of the scheme

[Eq. (10)]
0 dimensional variable
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spheres for all Prandtl numbers and for Re 6 2 · 105. Ken-
doush [12] obtained an analytical solution to the forced
convection heat and mass transfer across a laminar incom-
pressible boundary layer, over the surface of a stationary
isothermal sphere. Kendoush�s [12] solution is valid for
Pr < 1 (for gases) and for laminar flow with Re > O(102).

Feng and Michaelides [13] also derived an analytical
expression for the heat transfer from a sphere at low Peclet
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Fig. 1. Schematics of the flow past a sphere.

986 S.D. Dhole et al. / International Journal of Heat and Mass Transfer 49 (2006) 984–994
numbers assuming the Stokesian velocity distribution. Sub-
sequently, they [14] extended the range of these results by
numerically solving the complete Navier–Stokes and ther-
mal energy equations up to Reynolds numbers of 4000
and Pr 6 1000. It is perhaps appropriate to add here that
despite the fact that the flow around a sphere becomes
asymmetric and time dependent for Re > 200, but the time
averaged values of drag coefficient and Nusselt number do
not seem to differ significantly from the values based on the
steady state assumption [15,16].

All the aforementioned numerical studies are based on
the use of the constant wall temperature boundary condi-
tion at the surface of the sphere, and all except Feng and
Michaelides [14], are concerned with either low Re(�1)
and/or low Pr(<1). While the values of Prandtl number
up to 50–100 are frequently encountered in chemical,
petroleum and oil industries, no detailed study is available
elucidating the effect of Prandtl number on the local Nus-
selt number behavior and the effect of different thermal
boundary conditions for moderate Reynolds number flows.
Owing to the generally high viscosity of such process
streams, the Reynolds numbers often are not excessively
high and therefore the assumptions of steady and axisym-
metric flow are justified under these conditions.

The main objective of the present work is to study the
role of Prandtl number and of different thermal boundary
conditions on the heat transfer characteristics of a sphere
in the Reynolds number range of steady axisymmetric
regime. The numerical results have been used to develop
simple expressions for the prediction of mean heat transfer
coefficient for a sphere over the range of Prandtl numbers
as 0.7 6 Pr 6 400 and Reynolds numbers as 5 6 Re 6 200,
subject to the maximum Peclet number of 2000. Further-
more, included here is also the local Nusselt number varia-
tion along the sphere surface for both boundary
conditions, which has not been presented in detail by any
of the previous studies, e.g. [1,14]. Also, this work presents
a new approach to the modeling of a flow past a sphere
problem, which uses the Navier–Stokes equations in the
Cartesian coordinate system. This approach can readily
be extended to solve the 3-D and unsteady flow conditions
past a sphere encountered at Re > 200.

2. Problem statement and mathematical formulation

The 2-D flow of an incompressible fluid with an uniform
velocity U1 and temperature T1 over a sphere of diameter
D placed in an infinite medium is simulated by considering
the flow in a tubular domain with a sphere placed symmet-
rically on the tube axis with slip boundary conditions pre-
scribed on the tube walls (Fig. 1). The length and diameter
of the tubular domain are Lx and Ly. The sphere is situated
at an upstream distance of Lu from the inlet of the tube to
the center of the sphere and at a downstream distance of Ld

from the center of the sphere to the outlet of the tube. The
surface of the sphere is taken to be either at a constant tem-
perature, Tw (CWT) or at a uniform heat flux, qw (UHF).
While in practice, the thermal boundary conditions on the
surface of the sphere can be complex and ill-defined, but
the two commonly used conditions of isothermal sphere
or isoflux sphere capture the limiting cases. The latter con-
dition is encountered in situations when a sphere wound
with an electric coil is used as a measuring probe or sensor.
Incompressible flow, constant thermo-physical properties
of the fluids and negligible viscous dissipation are assumed
in this work.

The governing equations are made dimensionless by
using D, U1, D/U1 and qU 2

1 as scaling variables for
lengths, velocities, time and pressure, respectively. The
temperature is non-dimensionalized by using (Tw � T1)
or (qwD/k) as the characteristic temperature difference for
CWT and UHF conditions, respectively. All equations
and numerical values presented hereafter in this work are
in dimensionless form.

The flow and heat transfer phenomena is governed by
the continuity, the Navier–Stokes and the energy equations
as given below. The 3-D form of the governing equations in
the Cartesian coordinates is maintained since the source
code [17,18] in FORTRAN used in the present work is
designed to solve 3-D flows past complex geometries, using
Cartesian velocity components and a structured collocated
grid.

Continuity equation:

r � U ¼ 0 ð1Þ
Navier–Stokes equation:

DU
Dt

¼ �rp þ 1

Re
r2U where U ¼ ðV x; V y ; V zÞ ð2Þ

Energy equation:

DT
Dt

¼ 1

Pe
r2T ð3Þ

The dimensionless boundary conditions are given as
follows:

• At the inlet boundary: Uniform flow condition

V x ¼ 1; V y ¼ 0; V z ¼ 0;
op
ox

¼ 0 and T ¼ 0
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Fig. 2. Schematic representation of non-uniform computational grid
structure: (a) full grid and (b) close-up view near the sphere.
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• At the upper boundary (pipe wall): Slip flow condition

oV x

oy
¼ 0; V y ¼ 0; V z ¼ 0;

op
oy

¼ 0 and
oT
oy

¼ 0 ðadiabaticÞ

• On the sphere surface: No-slip condition

V x ¼ V y ¼ V z ¼ 0;
op
ons

¼ 0 and

T ¼ 1 ðCWT caseÞ or
oT
ons

¼ �1 ðUHF caseÞ

where ns represents the unit normal vector on s, the sur-
face of sphere.

• At the exit boundary: The Orlanski [19] boundary condi-
tion has been used at the exit boundary for all dependent
variables except for pressure:

o/
ot

þ U c

o/
ox

¼ 0

where / is any dependent variable (Vx,Vy,Vz,T) and Uc

is the dimensionless average streamwise velocity which
is set equal to 1. The pressure at the outlet is set to a
constant i.e., p = p1 = 0.

• At the plane of symmetry, i.e., at the axis of pipe:

oV x

oy
¼ 0; V y ¼ V z ¼ 0;

op
oy

¼ 0 and
oT
oy

¼ 0

• At the spherical plane of symmetry, i.e., in the azimuthal

(z) direction: Since the range of the Reynolds numbers
considered in this study is well within the 2-D symmetric
flow regime, the solution is obtained only for one half of
the domain in Fig. 1 and a 3-D sector consisting of three
cells in the z-direction (azimuthal direction) as shown in
Fig. 2(a). Only three cells are required in the azimuthal
direction, as the two side cells (left cells and right cells
(Fig. 3)) are present to enforce the axisymmetry bound-
ary conditions (see Appendix A) while the central cells
capture the 2-D flow structure. Fig. 2(b) shows the zoom
in view of the grid near the sphere. The 2-D view of
Fig. 2(a) is shown in Fig. 3.

The numerical solution of Eqs. (1)–(3) along with
these boundary conditions yields the velocity, pressure
and temperature fields which, in turn, are used to obtain
the surface vorticity, pressure coefficient, individual and
total drag coefficients, and Nusselt number, as discussed
below:

• The dimensionless vorticity at the surface of the sphere
is calculated as follows:

x ¼ 1

2

oV x

ons
sin hþ oV y

ons
cos h

� �
ð4Þ

where h is the angular displacement from the front stag-
nation point, and ns is the normal direction on the
sphere surface.
• The pressure coefficient defined as the ratio of the static
pressure to dynamic pressure on the surface of the
sphere, is calculated by the following expression:

Cp ¼ 2
p0ðhÞ � p01

qU 2
1

� �
ð5Þ

where p 0(h) is the surface pressure at an angular position
of h and p01 is the free-stream pressure at the exit
boundary.

• The total drag coefficient, sum of the viscous and the
pressure drag coefficients, is defined as
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CD ¼ 2F D

qU 2
1ðpR2

s Þ
¼ CDf þ CDp ð6Þ

The viscous and pressure drag coefficients, CDf and CDp

are evaluated as follows:

CDf ¼
4

Re

Z p

0

xsin2hdh and

CDp ¼
Z p

0

Cp sin 2hdh ð7Þ

• The local Nusselt number on the surface of the sphere is
evaluated by the following expressions:

Nuh ¼ � oT
ons

ðCWT caseÞ and Nuh ¼
1

T
ðUHF caseÞ

ð8Þ
These local values have been further averaged over the
whole sphere to obtain the surface average (or overall
mean) Nusselt number:

Nu ¼ 1

2

Z p

0

Nuh sin hdh ð9Þ

The average Nusselt number can be used in process
engineering design calculations to estimate the rate of
heat transfer from the sphere in the constant wall tem-
perature case, or to estimate the average surface temper-
ature of the sphere for the uniform heat flux condition
in a new application.

3. Numerical methodology

3.1. Grid generation

The schematic representation of the 3-D non-uniform
grid structure used in this work is shown in Fig. 2. For this
type of geometry, a suitable grid may be generated by an
appropriate combination of the methods of linear interpo-
lation, hyperbolic tangent spacing interpolation and trans-
finite interpolation in different regions, as described in [20].

Since the sphere is placed symmetrically and the flow
also exhibits axisymmetry in the range of Reynolds num-
bers studied here, the grid needs to be generated only in
one half of the domain having three cells (middle real cell
and side fictitious cells (Fig. 3)) in the third (azimuthal)
direction as shown in Fig. 2. In this case, the computational
domain is divided into three sub-domains and uniform and
non-uniform grid distributions are applied to obtain a suit-
able grid. This has the advantage that grid points can be
clustered in the regions of large gradients and a relatively
coarse grid can be used in the regions of minor interest.
The grid has been distributed uniformly along the sphere
surface. Since the available literature suggests the wake
region at the highest Reynolds number, i.e., Re = 200 used
in this work can extend up to 1.5 non-dimensional units
downstream, the clustered region is fixed to be within a
radial distance of 2.5 from the center of the sphere, to cap-
ture the wake region. In the clustered region, a circular grid
of fine and uniform spacing is generated. In the next region
2.5 units beyond the clustered region, the non-uniform grid
is generated by using hyperbolic tangent spacing interpola-
tion, to stretch the grid spacing from finer to coarser. In the
next region, i.e., beyond the stretched grid region, a grid
with coarser spacing is created using the transfinite
interpolation.

3.2. Numerical technique

The finite volume method of Eswaran and Prakash [17]
for complex 3-D geometries on a non-staggered (collo-
cated) grid has been used to discretized and solve the gov-
erning equations with a Semi-Implicit scheme. Hence, all
dependent variables Vx, Vy, Vz, p and T are defined at
the centroid of the control volume. The convective terms
are discretized using QUICK scheme [18,21], while the dif-
fusive terms are discretized using the central difference
scheme. The final equations were solved using a Gauss–Sei-
del iterative algorithm. The fully converged velocity field
obtained from the Navier–Stokes equations was used as
input to the thermal energy equation.

Since the cell-centered finite volume method is being
used, a zero-volume cell at each boundary has been imple-
mented to ensure that outermost cell-centers coincide with
the real physical boundary. This enables the exact bound-
ary conditions to be implemented at the surface of the
sphere. The implementation of the boundary conditions
with a zero-volume cell differs from that of fictitious cells
of finite volume, because the cell of a zero volume coincides
with the physical boundary. Thus, Dirichlet conditions can
be assigned directly to these cells. The FORTRAN source
code developed here has been extensively benchmarked for
the lid-driven cavity flow problem using the results of Ghia
et al. [22] and for the backward-facing step problem with
the results of Verma and Eswaran [23].

4. Results and discussion

Numerical computations have been carried out for Rey-
nolds numbers ranging from 5 to 200 and for various Pra-
ndtl numbers ranging from 0.7 to 200 (maximum value of
Peclet number is 2000). The effect of CWT and UHF
boundary conditions has been studied for the above-men-
tioned ranges of conditions.

4.1. Domain and grid independence

In the range of Reynolds numbers considered here, two
flow regimes are known to occur, i.e., 2-D steady flow with-
out wake formation for Re < 20, and 2-D steady flow with
wake formation for the range 20 6 Re 6 200. Therefore,
the domain independence has been carried out separately
for these two flow regimes. The domain is assumed with
Lu = Ld = Ly/2. For the range 20 6 Re 6 200, in the liter-
ature [14,24,25] the radial distance from the center of the



Table 2
Grid independence study

Grid size CDf CDp CD

Re = 100
63 · 112 0.5263 0.4938 1.0201
63 · 135 0.5639 0.4807 1.0445
103 · 146 0.5700 0.4915 1.0616
103 · 200 0.5787 0.4846 1.0633
103 · 307 0.5796 0.4823 1.0619

Re = 5
63 · 240 4.7567 2.2531 7.0098
103 · 298 4.7671 2.2597 7.0267
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sphere to the outer boundary of the computational
domain, hereafter called the domain size, varies from 30
to 90 times the radius of the sphere. Therefore, the domain
independence study for this Reynolds number range has
been carried out using domain sizes of 20 and 90. For
Re < 20, in the literature [14,25] the domain size varies
from 90 to 130 and hence the domain independence study
has been performed for domain sizes of 100 and 130 in this
flow regime. The grid size used for the domain study has a
minimum spacing of 0.01D in the clustered region and a
maximum spacing of 0.5D in the outer region. The number
of grid points on the sphere surface was 101. The grid size
used for the computations was 101 · Nj, where Nj varies
with the size of the domain. Table 1 shows that as the
domain size varies from 20 to 90, the changes in the values
of CDp,CDf and CD are found to be 0.88%, 0.39% and
0.57% for Re = 20 and 0.026%, 0.28% and 0.15% for
Re = 200, which is <1% for these extreme values of the
Reynolds number for the 2-D steady flow with wake for-
mation regime. Therefore, the domain size of 90 is chosen
to carry out the present computations, which is also consis-
tent with the previous studies [14,25]. For Re < 20, the
domain independence study is carried out for domain sizes
of 100 and 130 at Re = 5. Again it can be seen from Table 1
that as the domain size changes from 100 to 130, the result-
ing change in the values of CDp,CDf and CD is found to be
1.07%, 0.66% and 0.79%. To be on the safer side for this
flow regime (Re < 20), the domain size of 130 is finally cho-
sen to carry out the computations.

Having fixed domain size, the grid independence was
carried out for the two flow regimes, i.e., Re < 20 and
20 6 Re 6 200. For a domain size of 90, and the range of
20 6 Re 6 200, the grid independence study was carried
out by employing five non-uniform grids at Re = 100.
Table 2 shows the effect of grid size on the drag values.
The resulting maximum change in the drag values while
moving from grid 103 · 200 to 103 · 307 is 0.48%. The grid
meshing around the sphere for grid 5 is 0.01D which is fine
enough to resolve the boundary layer, (d = 1.13/Re1/2) [26],
where d is the momentum boundary layer thickness at the
stagnation point non-dimensionalized by the diameter of
the sphere. Similarly the grid independence study is shown
in Table 2 for two grid sizes for the Re < 20 range at
Table 1
Domain independence study

Domain size CDf CDp CD

Re = 5
100 4.7358 2.2355 6.9713
130 4.7671 2.2597 7.0267

Re = 20
20 1.7290 0.9778 2.7068
90 1.7223 0.9693 2.6915

Re = 200
20 0.3606 0.3847 0.7453
90 0.3596 0.3846 0.7442
Re = 5. The grid size of 63 · 240 is with the meshing of
0.02D near sphere and the grid size of 103 · 298 is with
the meshing of 0.01D near sphere. It can be seen from
Table 2 that the resulting maximum change in the drag val-
ues with these two grids is 0.29% at Re = 5. Though the
boundary layer is comparatively thick at Re < 20 and the
grid size of 63 · 240 can serve the purpose, but still the fine
mesh of 0.01D is used so that there is adequate number of
grid points within the thermal boundary layer at high Pec-
let numbers (thermal boundary layer dt � Pr�1/3d). There-
fore, grid size of 103 · 298 was finally chosen for the
present computations. The corresponding change in the
values of the Nusselt number with these domain and grid
sizes is found to be less than 1% for Re = 5 and 100 and
Pr = 7.

Finally, in such numerical studies, it is important to
keep in mind that there is inherent uncertainty [27] in the
results due to the grid size and the inaccuracy of the
scheme. This point unfortunately is often ignored. How-
ever, an attempt is made to estimate this uncertainty due
to the grid size and scheme accuracy used in this work. Fol-
lowing Roache [27], it is possible to estimate the uncer-
tainty using the results on two different grid sizes, one
fine and the other relatively coarse. According to the Grid
Convergence Index (GCI) method [27], the fractional
uncertainty in any quantity Q obtained through the numer-
ical solution on the fine grid can be estimated as

GCIðQfÞ ¼
F s

rag � 1

 !
jQf � Qcj

Qf

� �
ð10Þ

where subscripts ‘‘f’’ and ‘‘c’’ stand for values computed on
the fine and coarse grids, respectively, Fs is a factor of
safety (assumed 3 for general applications), ‘‘a’’ is the over-
all order of the accuracy of the scheme, rg is the ratio of the
refinement between the fine and coarse grids calculated as

rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N f=N c

p
ð11Þ

where N( = Ni · Nj) is the number of grid points. The
quantitative uncertainty in the value obtained on the fine
grid is given as

% Uncertainty ¼ �ðGCI� Qf � 100Þ ð12Þ



Table 4
Comparison of pressure coefficients with literature

Reference Cp(0) �Cp(p) Cp(0) �Cp(p)

Re = 5 Re = 10
Present work 2.411 1.162 1.773 0.604
Dennis and Walker [30] 2.599 1.203 1.878 0.654
LeClair [25] 2.601 1.163 1.869 0.606

Re = 20 Re = 50
Present work 1.433 0.330 1.189 0.190
Dennis and Walker [30] 1.471 0.322 – –
LeClair [25] 1.469 0.326 – –

Re = 100 Re = 200
Present work 1.098 0.155 1.055 0.111
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In the present work, central difference discretization is used
for diffusion terms. For the convection terms, QUICK
scheme has been used. Therefore, the overall method is
of second-order accuracy i.e., a = 2. In the present study
the grid uncertainty has been carried out for grids 2 and
5 i.e. (63 · 135) and (103 · 307) at Re = 100. For a non-
uniform grid, where rg is the ratio computed using Nc for
second grid with Nf of the fifth grid. Thus, rg from Eq.
(11) becomes 1.94. Therefore, the GCI over CD is 1.8%.
A safer, more conservative estimate is obtained by using
the smaller of the two directional rg�s (i.e., rg = 102/
62 = 1.645 along h and rg = 306/134 = 2.284 along radial
direction) giving GCI = 2.88%, which is consistent with
the previous studies as will be seen in the following section.

4.2. Validation

4.2.1. Drag coefficient

In order to validate the solver used in the present study,
the present values of the drag coefficient for an isothermal
sphere have been compared with those of Feng and
Michaelides [14], Johnson and Patel [24], LeClair [25], Tri-
pathi et al. [28], Fornberg [29], and Dennis and Walker
[30].

Table 3 shows a comparison of the present results with
previous results. The results are seen to be in good agree-
ment, within overall differences of ±3% to 4%. Such devi-
ations are not uncommon in numerical studies due to the
differences in the flow schematics, problem formulations,
grid and/or domain sizes, discretization schemes, numerical
methods, etc. Furthermore, additional computations have
been carried out by using UP + CD scheme for the convec-
tive terms and the maximum deviation is of around 2–3%
with the previous studies. The difference between the pres-
Table 3
Comparison of drag values with literature

Reference CDf CDp C

Re = 5
Present work 4.7671 2.2597 7
Feng and Michaelides [14] 4.694 2.346 7
Tripathi et al. [28] – – –
Dennis and Walker [30] 4.738 2.472 7
LeClair [25] 4.677 2.444 7

Re = 20
Present work 1.7223 0.9693 2
Feng and Michaelides [14] 1.694 0.988 2
Johnson and Patel [24] – – –
Tripathi et al. [28] – – –
Dennis and Walker [30] 1.708 1.024 2
LeClair [25] 1.719 1.017 2

Re = 100
Present work 0.5796 0.4823 1
Feng and Michaelides [14] 0.5714 0.5234 1
Johnson and Patel [24] – – 1
Tripathi et al. [28] 0.543 0.4763 1
Fornberg [29] 0.5765 0.5087 1
LeClair [25] 0.590 0.507 1
ent results and the previous studies using QUICK scheme
is more than that for UP + CD scheme because all of the
previous numerical studies are based on either first- or sec-
ond-order upwinding. Even all the previous studies
[14,24,25,28–30] differ with the maximum of 3–4% when
compared with each other. It must be mentioned here that
all of the recent studies [14,24,28] have solved the govern-
ing equations in spherical coordinates and the present for-
mulation is based on the Cartesian coordinate system and
the fact that the present results are consistent with the pre-
vious literature studies testifies to the validity of the use of
Cartesian coordinate system for this geometry. In addition
to the values of drag coefficients, Tables 4 and 5 present
extensive comparisons between the present values of the
pressure coefficient Cp(0) and Cp(p), length of recirculation
region (Lr), angle of separation (hs) with the literature
values. Once again, the present results are seen to be in
good agreement with the contemporary values available
in the literature. Further comparisons performed in terms
D CDf CDp CD

Re = 10
.0267 2.8113 1.470 4.2813
.040 – – –

2.785 1.5254 4.3104
.210 2.854 1.570 4.424
.121 2.801 1.536 4.337

Re = 50
.6915 0.9233 0.6286 1.5519
.682 – – –

– – 1.569
0.8987 0.6509 1.5496

.730 – – –

.736 – – –

Re = 200
.0619 0.3596 0.3846 0.7442
.0948 – – –
.094 – – 0.771
.0192 0.3466 0.3065 0.6531
.0852 0.3590 0.4093 0.7683
.096 0.372 0.400 0.772



Table 5
Comparison of recirculation length and angle of separation with literature

Reference Re = 50 Re = 100 Re = 200

Lr hs Lr hs Lr hs

Present work 0.41 139.68 0.88 127 1.43 116
Johnson and
Patel [24]

0.404 138 0.865 126 1.439 115

Fornberg [29] – – 0.872 – 1.434 –
Clift et al. [1] – 139.26 – 126.52 – 116.42
LeClair [25] – – 0.94 126 – 116
Taneda [31] 0.45 139 0.937 126 – 119
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of the surface vorticity and surface pressure with the liter-
ature values, also showed an excellent agreement between
the present and the literature values [25].

4.2.2. Nusselt number

Using the fully converged velocity field, the thermal
energy equation is solved for the temperature field to
obtain the local and average Nusselt numbers as functions
of the Reynolds number, Prandtl number and the bound-
ary condition. Fig. 4 shows the comparison of the present
results for CWT condition at Prandtl numbers 0.7, 5 and
10 with Whitaker�s [5] correlation given here as Eq. (13),
which is based on experiments with air, water and oil for
1 6 Re 6 105 and the correlation (14), proposed by Feng
and Michaelides [14] which is based on their steady state
numerical results for 0.1 6 Re 6 4000 and 0.2 6 Pe 6

2000. It needs to be emphasized here that the Whitakar�s
[5] correlations for flat plate, single cylinder and single
sphere have gained wide acceptance, are easy to use, and
are quite satisfactory for most of the design calculations
and indeed are cited widely in most books, e.g. [4]. The
present numerical results are well within the uncertainty
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Fig. 4. Comparison of average Nusselt number with correlations.
(20%) of the Whitaker�s [5] correlation, and a maximum
deviation of 3% is observed from Eq. (14) of Feng and
Michaelides [14].

Nu ¼ 2þ ð0:4Re1=2 þ 0:06Re2=3ÞPr0:4 l
lwall

� �1=4

ð13Þ

Nu ¼ ð0:922þ Pe1=3 þ 0:1Re1=3Pe1=3Þ ð14Þ

In summary, thus the present results exhibit good corre-
spondence with the previous experimental and numerical
studies and the present results for Nusselt number may
be regarded to be reliable within 2–3%. This also inspires
confidence in the use of the Cartesian form of the field
equations for such flow problems.
4.3. Heat transfer results

4.3.1. Local Nusselt number

Due to the inherent underlying differences, the results
for the two thermal boundary conditions are discussed
separately.

4.3.1.1. Constant temperature condition (isothermal sphere).
The variation of the local Nusselt number on the sphere
surface for the CWT condition at Re = 5, 50 and 200 for
a range of values of the Prandtl number is shown in
Fig. 5(a)–(c). As expected, the Nusselt number increases
with an increase in the Reynolds number and/or Prandtl
number. Fig. 5(a) shows the relatively large value of the
Nusselt number at the front stagnation point (h = 0�)
which decreases gradually along the surface of the sphere,
to a minimum value at the rear stagnation point. For
Re > 20, i.e., when flow separation occurs, Fig. 5(b) and
(c) shows that the Nusselt number decreases from its max-
imum at the front stagnation point (h = 0�) to a minimum
value near the point of separation, beyond which a very
gradual increase in the values of local Nusselt number
can be seen up to the rear stagnation point. The change
in the slope in the Nusselt number variation after the sep-
aration point is evidently due to the existence of a vortex. It
can also be seen that the local Nusselt number is strongly
influenced by the value of the Prandtl number. At
Re = 5, the local Nusselt number at the front stagnation
point increases from 3.6 to 25.2 as the Prandtl number
increases from 0.7 to 400. However, the increase in the
Nusselt number at the rear stagnation point is compara-
tively small, i.e., from 2.04 to 2.28. On the other hand, at
Re = 200, the front stagnation Nusselt number increases
from 16.7 to 43.7 while the rear stagnation Nusselt number
increases from 7.6 to 23.2 as Prandtl number increases
from 0.7 to 10.

4.3.1.2. Uniform heat flux condition (isoflux sphere). Repre-
sentative results on the variation of the local Nusselt num-
ber on the surface of the sphere for this case are shown
in Fig. 5(d)–(f). These figures show qualitatively similar
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Fig. 5. Local Nusselt number variation on the sphere surface for Re = 5, Re = 50 and Re = 200 at various Prandtl numbers for both CWT (a–c) and UHF
(d–f) conditions.
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features to those in Fig. 5(a)–(c) for the CWT boundary
condition.

4.3.2. Average Nusselt number

Fig. 6(a) and (b) shows the variation of the average Nus-
selt number with the Reynolds number at different Prandtl
numbers for the CWT and UHF conditions, respectively.
The functional relationship between the Nusselt number,
Prandtl number and the Reynolds number is seen to be
qualitatively similar for both the thermal boundary condi-
tions. It is seen that the average Nusselt number for the
sphere increases with the increasing Reynolds number
and/or Prandtl number. For the CWT condition, the pres-
ent numerical data is best fitted by the correlation of Feng
and Michaelides [14], Eq. (14). This equation correlates the
present numerical data with the maximum and average
deviations of 3.75% and 1.45%, respectively which are well
within the limits of the stated uncertainty of this correla-
tion. However, no prior analytical/numerical results are
available for the UHF boundary condition. To fit the pres-
ent numerical data for the UHF condition, the form of Eq.
(14) is retained here along with the power indices, but with
slightly different values of the constants as follows:

Nu ¼ ð1þ Pe1=3 þ 0:158Re1=3Pe1=3Þ ð15Þ
Eq. (15) correlates the present numerical data with maxi-
mum and average deviations of 4.14% and 1.82%, respec-
tively. The average Nusselt number is always higher for
the UHF condition than that for the CWT condition, as
is indicated by the constants in Eqs. (14) and (15). For in-
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stance, for Re = 5, and Pr = 400, the difference in the two
values is of the order of 16%. This difference in the values
of average Nusselt number increases with the Prandtl num-
ber and/or Reynolds number.
5. Conclusions

In the present study, the effects of Prandtl number
(0.7 6 Pr 6 400) and of the two commonly used thermal
boundary conditions on the forced convection heat transfer
from an unconfined sphere have been investigated in the
Reynolds number range of 5 6 Re 6 200 in the steady sym-
metric regime. For Re > 20, the local Nusselt number on
the sphere surface decreases from its maximum at the front
stagnation point up to the point of separation and then
again increases from the point of separation to the rear
stagnation point. The average Nusselt number increases
monotonically with Reynolds number and/or Prandtl num-
ber and it is always higher for the UHF boundary condi-
tion than that for the CWT condition. While the present
results for the CWT condition are in good agreement with
the previous results, no prior results are available for the
UHF condition. Finally, Eqs. (14) and (15) capture well
the dependence of Nusselt number on the Reynolds and
Peclet numbers. In addition, the dependence of the mean
Nusselt number on the Reynolds and Prandtl numbers
has been linked to the distribution of the local Nusselt
number on the surface of the sphere.
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Appendix A. Boundary condition in the azimuthal direction

The free slip and axisymmetry boundary conditions
have been applied in the z (azimuthal) direction. This
means that the azimuthal velocity is set to zero and the azi-
muthal gradient of all other variables including the tangen-
tial velocities should vanish. The implementation of this is
demonstrated with the help of Fig. 3 for the left face.

The normal and the tangential velocities are calculated
for both the real (middle) and fictitious (side) cells using
the discretized azimuthal angle /z per cell as

V n
y1 ¼ �V y1 sinð/z=2Þ þ V z1 cosð/z=2Þ

V n
y2 ¼ �V y2 sinð/z=2Þ þ V z2 cosð/z=2Þ

V t
y1 ¼ V y1 cosð/z=2Þ þ V z1 sinð/z=2Þ

V t
y2 ¼ V y2 cosð/z=2Þ þ V z2 sinð/z=2Þ

Using these velocities, the normal component of velocity
and the normal gradient of the tangential velocities can
be calculated. Setting these two quantities equal to zero,
the boundary conditions for the velocities can be obtained
as follows:

V y1 ¼ V y2 cosð/zÞ þ V z2 sinð/zÞ
V z1 ¼ V y2 sinð/zÞ � V z2 cosð/zÞ

One can similarly obtain the boundary conditions for the
right face. The homogeneous Neumann (zero gradient)
boundary conditions for the other variables can be easily
implemented by putting their values in the fictitious side
cells equal to the computed values in the middle cell i.e.,

oV x

oz
¼ 0;

op
oz

¼ 0;
oT
oz

¼ 0
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